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This tutorial paper is concerned with the identificatiomwontinuous or discrete. Some of the variables can also be
of hybrid models, i.e. dynamical models whose behavidiscrete-event driven in an asynchronous manner.
is determined by interacting continuous and discrete dy-Hybrid systems arise not only from the interaction of
namics. Methods specifically aimed at the identificatidagic devices and continuous processes. They can be used
of models with a hybrid structure are of very recent datéo describe real phenomena that exhibit discontinuous be-
After discussing the main issues and difficulties connectealiors. For instance, the trajectory of a bouncing ball
with hybrid system identification, and giving an overvievesults from the alternation between free fall and elastic
of the related literature, this paper focuses on four diontact. Moreover, hybrid models can be used to approx-
ferent approaches for the identification of switched affinmate continuous phenomena by concatenating different
and piecewise affine models, namely an algebraic pnmodels from a simple class. For instance, a nonlinear dy-
cedure, a Bayesian procedure, a clustering-based proecemical system can be approximated by switching among
dure, and a bounded-error procedure. The main featurearious linear models.
of the selected procedures are presented, and possiblBue to their many potential applications, hybrid sys-
interactions to still enhance their effectiveness are sugms have attracted increasing attention in the control
gested. community during the last decade. Numerous results on
analysis, verification, computation, stability and control
Keywords: Hybrid System Identification; Switchedof hyprid systems have appeared in the literature. How-
Affine and I?iecc_awise _Affine Models; Classification; Pasyer, most of the theoretical developments hinge on the
rameter Estimation; Linear Separation assumption that a hybrid model of the process at hand
is available. In some situations it is possible to obtain
such a model starting from first principles. On the other
hand, first principles modelling is too complicated or even
1 Introduction impossible to apply in most practical situations, and the

model needs to be identified on the basis of experimental
Hybrid systems are heterogeneous dynamical systegagy.

whose behavior is determined by interacting continuous

and discrete dynamics. The continuous dynamics is del Paper contribution

scribed by variables taking values from a continuous set,

while the discrete dynamics is described by variables tdR-the first part, this paper introduces the topic of hy-

ing values from a discrete, typically finite, set. The cofprid system identification by focusing in particular on

tinuous or discrete-valued variables may depend on the identification of switched affine and PieceWise Affine

dependent variables such as time, which in turn may G&WA) models. PWA systems are a class of hybrid sys-

* . , tems obtained by partitioning the state-input domain into
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region [66]. Since PWA models are equivalent to severalAmong the proposed approaches, contributions of the
classes of hybrid models [4, 34, 67], PWA system ideauthors of this paper are represented by four different pro-
tification techniques are suitable to obtain hybrid modetedures for the identification of switched affine and piece-
from data. Moreover, the universal approximation propvise affine models, namely the algebraic procedure [78],
erties of PWA maps [14, 49] make PWA models attractitbe clustering-based procedure [27], the Bayesian proce-
also for nonlinear system identification [64]. dure [47], and the bounded-error procedure [5]. These

Identification of PWA models is a challenging problentechniques have been successfully applied in several real
that involves the estimation of both the parameters of theoblems, such as the identification of the electronic com-
affine submodels, and the coefficients of the hyperplanmamnent placement process in pick-and-place machines
defining the partition of the state-input domain (or the rg5, 43, 47], the modelling of a current transformer [27],
gressors domain, for models in input-output form). Theaction control [11], and motion segmentation in com-
main difficulty lies in the fact that the identification probputer vision [76, 77]. The main features of the selected
lem includes a classification problem where each daehniques are summarized in the second part of the pa-
point must be associated to the most suitable submoghsr. Possible interactions to still enhance their effective-
Concerning the partitioning, two alternative approachesss are also suggested.

can be distinguished: _
o o 1.2 Paper outline
1. the partition is fixed a priori;

2. the partition is estimated along with the submodelér.his paper is organized as follows. Section 2 introduces
the classes of switched affine and piecewise affine mod-

In the first case, data classification is very simple, and @35 hoth in state space and input-output form. Section 3
timation of the submodels can be carried out by resortigghorts several formulations of the identification problem
to standard linear identification techniques. In the secopg these model classes, and presents an overview of the
case, the regions must be shaped to the clusters of daigyted literature. Different identification approaches are
and the strict relation among data classification, parag)assified along the lines proposed in [61]. The problems
eter estimation and region estimation makes the identi¢ gata classification and region estimation are addressed
cation problem very hard to cope with. The problem ig section 4 for those approaches that firstly classify the
even harder when also the number of submodels musiga, then estimate the affine dynamics, and finally recon-
estimated. struct the polyhedral partition. Most recent contributions
Different techniques leading to PWA models of smooifa the identification of models with hybrid and discontin-
dynamical systems can be found in the extensive literatyj§,s characteristics belong to this category. Four proce-
on nonlinear black-box identification. A nice overview igjres falling into the category analyzed in Section 4, are
presented in [61]. However, most of these approaches fgally described and discussed in Section 5. Section 6

sume that the system dynamics is continuous. Recenglyaws the conclusions, and foreshadows interesting top-
novel contributions allowing for discontinuities have beggs for future research.

proposed in both the hybrid systems and the nonlinear

identification communities. An iterative algorithm tha2 Switched affine and piecewise affine models
sequentially estimates the parameters of the model and

classifies the data through the use of adapted weight&witched affine models are defined as collections of lin-
described in [60]. A method based on statistical cluste@ar/affine models, connected by switches that are indexed
ing of measured data via a Gaussian mixture model apyi a discrete-valued additional variable, called the dis-
support vector classifiers is presented in [56]. Severiete state. Models for which the discrete state is deter-
optimization problem formulations of the identificatiormined by a polyhedral partition of the state-input domain,
problem are proposed in [54, 55]. In [62] the identifiare called piecewise affine models. They can be used
cation problem is formulated for two subclasses of PW& model a large number of physical processes (see, e.g.
models, namely Hinging Hyperplane ARX (HHARX)[3, 17, 18, 48, 69]), and are suitable to approximate virtu-
and Wiener PWARX (W-PWARX) models, and solvedlly any nonlinear dynamics, e.g., via multiple lineariza-
via mixed-integer linear or quadratic programs. Subspdiens at different operating points. Moreover, piecewise
identification of piecewise linear systems is addressedafiine models are equivalent to several classes of hybrid
[10, 71], while recursive identification of switched hybridnodels, and can therefore be used to describe systems
systems is addressed in [32, 75]. exhibiting hybrid structure.



2.1 Models in state space form Linear ComplementarityEL C) models [20], andVax-
Min-Plus-Scaling(MMPS) models [21]. Equivalences
A discrete-time switched affine modelstate spacéorm among these five classes of systems are proven in [4, 34].
is described by the equations Such results are very important for transferring theoretical
properties and tools (e.g., control and identification tech-
(1) niques) from one class to another, as they imply that one
can choose the most convenient hybrid modelling frame-

wherez;, € R", u, € RP andy, € R are, respec- work for the study of a particular hybrid system.

tively, the ontinuou$ state, the input and the output o
the system at timé& € Z, andw, € R" andv, € R?

are noise/error terms. Tlaliscretestateo(k), describ- For fixed model orders, andn,, a Switched affine Au-

Ing 1n what affine dynamlcs_ t_he system Is at e . toRegressive eXogeno(BARX) model is defined by in-
is assumed to take only a finite number of values, 'ﬁoducing the regression vector

o(k) € {1,...,s}, wheres is the number of affine sub-
models. In general (k) can be a function of, T, U, Ty = [y;_l yz_na u; ul;r_l U;—nb T, (4)
or some other external input. The real matrices/vectors
A;, By, fi, C;, Dy andg;, i = 1,...,s, having appro- and then by expressing the outgytas a piecewise affine
priate dimensions, describe each affine dynamics. Henfitgction ofr, namely
model (1) can be seen as a collection of affine models T
with continuous state:;, connected by switches that are Yr = Qa(k) ]+ e (5)
indexed by the discrete stai¢k). . . .

The evo)llution of the disgﬁe)state can be described iHVQereJ(k) < {1’ e ’s}_'s the discrete state; is t_he
variety of ways. InJump Linear(JL) modelso (k) is an number of submo_de_lﬁ,i, i=1...,s arethe mat_rlces
unknown, deterministic and finite-valued input.Jamp- of parameters defining each submodel, apcE R? is a

. . o

Markov Linear(JML) models, the dynamics of (k) is n(?lllst?/errcl)lr ;[jetrrr]n. I? th; ?”O\ngf the Vfcw% =[]

modelled as an irreducible Markov chain governed 6@'/' € called theextendedegression vector. .
SARX models represent a subclass of the switched

the transition probabilitiesr(i,j) = P(o(k + 1) = : . .
j ‘ (k) = Z) In PieceWise AfinéPWA) models [66], affine modgls_ (1), and can be easily transformed into that
form by defining the continuous state as

o (k) is given by the rule

Tpr1 = Aoy Tk + Bo) Uk + for) + wi
Y = Comy @i+ Dog) Uk + Gor) + Vks

t2.2 Models in input-output form

_ T T T T T
ok) =i iff [S]eQ, i=1....s, ()  TH=[Uk1 o Ykon, Ut o U, ] (6)

As for the models in state space form, the evolution of the
discrete mode (k) can be described in a variety of ways.
In PieceWise affine AutoRegressive eXoge(BUWARX)
models the switching mechanism is determined by a poly-

where{Q;};_, is a complete partitiohof the state-input
domainQ) C R"*P. The regions?; are assumed to be
convex polyhedra described by

0, = {[Z] eR™7 : H, {ﬁ] <1 0}, (3) hedral partition of the regressors domainc R?, where
t= d=q-ng+p-(ny+1). This means that for these models
where fl; € RAx(n+p+1) ;i = 1, ... s, andj; is the the discrete state(k) is given by

number of linear inequalities defining thith polyhedral
region(2;. With abuse of notation, in (3) the symbsi;
denotes qu;-dimensional vector whose elements can Qﬁhere{Ri}f_l is a complete partition oR. Each region

the symbols< and< in order to avoid that the regios R, is a convex polyhedron described by
overlap over common boundaries.

O’(k):i iff rpeR;, i=1,...,s, (7)

Ri={reR?: H;[T] <0}, 8
Remark 2.1 PWA models form a special class of hy- {r HE J ®)

brid models. Other descriptions for hybrid systems iRgnerefr; € Rrx(+1) § = 1,.. . s, u; is the number of
cludeMixed Loglcal_ Dynamica(MLD) models [6],Lin-  |inear inequalities defining théh polyhedral regiorR;

1A collection {A;}:_, is said to be a (complete) partition of C ~ VECtOr whose elements can be the symboland <. In
R™ if Us_1 A; = AandA; NA; = 0,Vi # 5. general, the shape @& reflects the physical constraints




on the inputs and the outputs of the system. For instanc

typical constraints on the output can g || < Ymax

or ||yk - ykfIHOO < Aymazy Where” ’ ||OO is the mflmty 10

norm of a vector, ang,,,q, andAy,.... are fixed bounds.
By introducing the piecewise affine map

0l it Hip=p0

f(r) = : : )
0,0 i Hsp =40,

with ¢ = [T], it will be useful to rewrite the model de-
fined by (5), (7) and (8) as

Y. = f(ri) + e (10) ; 1ot ]

Remark 2.2 The PWA ma}p (9) can be disc:Ontinuou%igure 1. Discontinuous PWA map of two variables with= 3
along the boundaries defined by the polyhedra (8), R

shown in Fig. 1. Though, for the sake of simplicity, in

the following the subscripfi] will be removed from the

notation=;, one must always take care of the definition If the system generating the data has the structure (5),
of the regions, to avoid that the PWA map is multiply de2n exact algebraic solution to Problem 3.1 is presented

ions.

ﬁned over common boundaries Of the regidhls in [51, 74, 78] fOI‘ the case Of nOiseleSS da.ta. (though the
approach can be amended to work also with noisy data).
3 Hybrid system identification The algorithm only requires to fix upper bounds, 7,

_ _ _ o _ _ ands on the model orders and the number of submodels,
In this section, the identification problem will be fIrStlyrespectivewl A description of the a|go|’ithm will be given
addressed for input-output models, and then for stgteSection 5.

space models. An overview of the related literature is fi- |f the model orders are fixed, the problem is to fit the

nally presented. For the sake of clarity, single input-singata tos hyperplanes. This problem is addressed in the
output systems (i.ep = ¢ = 1) are considered. To thisfield of data analysis, and several approaches are pro-
aim, notationsyx, ux ande will be used instead of,, posed wheres is either estimated from data or fixed a
ug andeg. The discussion can be straightforwardly expriori. One way to estimate is by solving the following
tended to multi input-single output systems (7> 1 problem.

andq = 1). Multi input-multi output systems (i.ep > 1

andg > 1) are also handled by state-space techniqu&spblem 3.2 Givend > 0, find the smallest numberof

while in the input-output case one can identify a modeectorsd;, ¢ = 1,...,s, and a mapping — o(k) such
for each output by considering the other outputs as adthiat

tional input$. Yk — @p Oy <0 (11)
3.1 Identification problem for SARX models forallk =n,..., N, wheren = max{ng,np} + 1.

For SARX models (5), the general identification problem Problem 3.2 consists in findingrartition of the system
reads as follows. of inequalities

Problem 3.1 Given a collection ofV input-output pairs lyk —pp 0| <6, k=n,...,N, (12)

(yk,ur), k=1,..., N, estimate the model ordeng and

ny, the number of submodeis and the parameter vectorsgnto a Minimum number ofFeasible Subsysten{MIN

i, i = 1,...,s. Moreover, estimate the discrete stateFS problem). The bound in (12) is not necessarily

o(k) for k > max{ng, np}. given a priori (e.g., if the noise is bounded, and the bound
Thou , . is.known), rather it can be adjusted in order to find the

gh this approach may lead in general to a larger number of .
regions than necessary, since the overall partition is obtained by in@gSired trade off between number of submodels and ac-
secting the partitions of the single models. curacy. In fact, the smallef, the larger is typically the




1 , , : : , , timization problem:

N s
min Z Zﬁ(yk — (p;@i)xlm

Ouxwi i

S
st Y xgi=1 Vk
=1

Xki € {0,1} Vk,i.

(13)

number of submodels

In (13), each binary variablg;,; describes whether the

o 1 2 s 4 s & 7 data point(y, ) is associated to thgh submodel, un-

. , , , , , , der the constraint that each data point must be associated
to only one submodel. The discrete staté) can be fi-
nally reconstructed according to the rule:

24, ok)=14 iff xp;=1. (14)

g

23’ ] The optimization problem in (13) ismixed integempro-

£ ] gram that is computationally intractable, except for small

instances. In principle, branch and bound algorithms
could be applied, but the search tree increases exponen-
% 1 2z 3 _ 4 5 & 7 tially with the number of datav and the number of sub-
modelss. It is shown in [55] that (13) can be transformed

Figure 2. Number of submodels and mean squared error aé:nto a smooth constrained optimization problem by relax-

a : . ; C
function of § for a data set generated by a SARX system with'Y the integer constraints, i.e. by requiring; < [0, 1],

four discrete states and Gaussian additive noise with zeamm_v}ff . Thg global optimum of the relaxed problem co-
and variance? = 0.1. incides with the global optimum of (13). Moreover, an

integer solution can be readily obtained from the solu-

tion of the relaxed problem. By the same reasoning, it is
number of submodels needed to fit the aaqmne on the also shown that (13) can be transformed into the follow-
other hand, the large¥, the worse is the fit, since largefing non-smooth unconstrained optimization problem:
errors are allowed. Figure 2 shows two typical plots of the
number of submodels and the Mean Squared Error (MSE)
as a function ob when solving Problem 3.2 for a given
data set. The choice of a suitables typically made at the

knee of thes-curve, where also the MSE is kept low. Thén order to not get trapped in a local minimum, suitable
MIN PFS problem is NP-hard, and a suboptimal greedyptimization techniques must be used to tackle the solu-
randomized algorithm to tackle its solution is proposed {fbn of the equivalent problems. It is reported in [55] that
[1]. state-of-the-art solvers, such as [38], are able to solve (15)

If s is fixed, the well-known optimization approachn reasonable time at least for sample problems.
used in linear system identification (i.e. choose the pa-An alternative to the formulation (13) is the clustering
rameters of a linear model such that they minimize sorggyorithm proposed in [12], which groups the given data
prediction error norm) can be generalized to the identifioints intos clusters by generatingplanes that represent
cation of SARX models. Given a nonnegative functiog |ocal solution to the non-convex problem of minimizing
((-), such ag(e) = &* or {(¢) = [e], the estimation of the sum of squares of the 2-norm distances between each
the parameter vectors, i = 1,.. ., s, and of the discrete point and a nearest plane.
stateo (k) can be in fact formulated as the following op-

3.2 Identification problem for PWARX models

N
”éinkz i (= 01.0). (15)

3In this case overfit may occur, i.e. the model adjusts to the particO PWARX models defined by (5), (7) and (8), the gen-
ular noise realization. eral identification problem reads as follows.



Problem 3.3 Given a collection ofV input-output pairs y
(yk,ur), k=1,..., N, estimate the model orderg and
nyp, the number of submodels the parameter vectots
and the region®R;,i =1, ..., s.

Note that, in the case of piecewise affine models, ther:
partition of the regressors domain automatically implies
the estimation of the discrete state according to (7).

All techniques specifically developed for the identifica-
tion of PWARX models, assume fixed orders andn,.

The estimation of the model orders can be based on pre-
liminary data analysis, and carried out by algebraic tech-
niques such as [51, 74], or classical model order selectiogure 3. Two hinging hyperplanesy = "¢~ and
techniques (see [50]). Hence, in the following the orde¥s = ' 67, and the corresponding hinge functign =
n, andny, are given, andh = max{ny,ny} + 1. max{p 0", "0}, wherep = [r1 2 1]

The considered identification problem consists in find-
ing the PWARX model that best matches the given dajge identification problem reduces to the following opti-
according to a specified criterion of fit. It involves thenization problem:
estimation of:

N s
e The number of discrete states 1 .
NN Z Zg(yk — 01 0i) Xk, i (17)

e The parameters;, i = 1,..., s, of the affine sub- k=n =1
models.

where/(-) is a given nonnegative function. ffe) = 2,
e The coefficientdd;,i = 1,..., s, of the hyperplanes (17) is an ordinary least-squares problem in the unknowns

defining the partition of the regressors set. 0;.
In [61, 62] the identification problem is reformulated

This issue also underlies a classification problem sugh 1« (|ass of Hinging-Hyperplane ARX (HHARX)
that each data point is associated to one region, anqﬂ8dels [14], which are described by
the corresponding submodel. The simultaneous optimal '

estimation of all the quantities mentioned above is a very yr = (e 0) + en

hard, computationally intractable problem. To the best of v 18)
the authors_ knowle_dg_e, no satisfactory formulation in the Fr0) = @;00 4 Z o; max{cp;(%, 0},

form of a single optimization problem has been even pro-
vided for it. One of the main concerns is how to choose
s in a sensible way. For instance, perfect fit is obtainggherey = [6] 67 ...6]]T, ando; € {—1,1} are fixed a

by lettings = N, i.e. one submodel per each data poingriori. Itis easy to see that HHARX models are a subclass
which is clearly an inadequate solution. Penalties on igf PWARX models for which the PWA map (9) is con-
creasings should be therefore introduced in order to keefhuous. The number of submodelss bounded by the
the number of submodels reasonably low, and to aVdeantitijzo (J\J/I) which only depends on the length
overfit because the model is given too many degreesgdthe regression vector, and the numbéf hinge func-
freedom. An additional difficulty is how to express eftions (see Fig. 3). The identification problem considered

ficiently the constraint that the coIIectio[ﬂ%i}le must in [62] selects the 0ptima| parameter Vecﬂb[‘oy So|ving
form a complete partition of the regressors donfain

The problem becomes easy if the number of discrete N
statess is fixed, and the regions (8) are either known or 0" = arg melnz lye — f(ri; 0)[7, (19)
fixed a priori. In that case each regression veatgrcan k=n

be _assoma'Fed to one su_b_model according to (7). Hen\?v?ferep = 1 or 2. Assuming a priori known bounds @h
by introducing the quantities

(which can be taken arbitrarily large), (19) can be refor-
1 ifreR; ki 5 mulated as a mixed-integer linear or quadratic program
Xki =3 0 otherwise b (16) (MILP/MIQP) by introducing auxiliary continuous vari-

i=1



ablesz; (k) = max{p, 6;,0}, and binary variables basis. In [71] it is discussed how the transitions between
the submodels can be used to this aim. The algorithm re-
5:(k) = {0 if o 6; <0 (20) Ouires asufficiently large number of transitions for which
1 otherwise the states at the transition are linearly independent.

Heuristics and suboptimal techniques for the identifica-

The MILP/MIQP problems can then be solved for thg, of switched and piecewise affine state space models
global optimum. The optimality of the described aps;e summarized in the next subsection.
proach comes at the cost of a theoretically very high

worst-case computational complexity, which means th@a#@ Literature overview
it is mainly suitable for small-scale problems (e.g., when
it is very costly to obtain data). To be able to handlé this subsection, an overview of different approaches to
somewhat larger problems, different suboptimal approxie identification of switched affine and piecewise affine
mations are proposed in [61]. Various extensions are afsodels is presented. The description is not intended to be
possible for handling non-fixed;, discontinuities, gen- exhaustive, and the interested reader is referred to [61] for
eral PWARX models, etc., again at the cost of increasadditional details. The list of references in [61] is com-
computational complexity. pleted here with most recent contributions.

Most of the heuristic and suboptimal approaches that ) ]
are applicable, or at least related, to the identification 8f+1 Switched affine models
PWARX models, either assume a fixedr adjusts itera-
tively (e.g., by adding one submodel at a time) in order
improve the fit. A few techniques allow for the automati
estimation ofs from data. An overview of the related lit-
erature is presented in Section 3.4.

e contributions [51, 74, 78], where an algebraic proce-
dure for the estimation of the model orders, the number of
discrete state and the model parameters, is proposed. The
identification of SARX models is also considered in [58],
3.3 lIdentification problem for state space models where it is assumed that switchings occur with a certain

probability at each time step, and [72, 73], where identi-

For switched affine models defined by (1), or piecewidigation schemes for multi-mode and Markov models are
affine models defined by (1), (2) and (3), the general idetieveloped. Switched affine models in state space form

tification problem reads as follows. are considered in [10, 36, 71]. While in [71] the discrete
. ) ) . state is assumed to be known, and the focus is mainly on

Problem 3.4 Given a collection ,OW Input-output pairs determining the state transformations to express all the
(e, ug), k= 1,...,N, estimate the model O submodels in the same state basis (see Section 3.3), in
der n, the number O,f submodels, and the 6-tpples [10] the number of discrete states and the switching times
(A, Bj, fi, Ci, Di gi), i = 1. 5. Moreover, estimate ;oo timated from data. In both contributions, subspace

the dlsc_:rete s_tat@(k), k - 1. = N, and, if the model is identification techniques are used to identify the individ-

piecewise affine, the region, i = 1,...,s. ual submodels. In [36], the estimation of the model or-

As for the models in input-output form, the difficulty ofders, the number of submodels and the switching times
Problem 3.4 depends on which quantities are assumedstgarried out by embedding the input-output data into
be known. Nevertheless, while for SARX/PWARX moda higher dimensional space, where the problem becomes
els the identification problem is easy if all the quantitiei§e one of segmenting the data into distinct subspaces.

(including the switching sequence) are known, and on3y

I _ _ ,
the parameters of the submodels must be estimated, a‘hz Piecewise affine models

a'lddl.tlonal difficulty arises when dealing .Wlth the Iden'[I\_/Vork on regression with PWA maps can be found in many
fication of state space models. If the switching seque

. . . nt‘lzeelds, such as neural networks, electrical networks, time-
is known, the matrices of each submodel can still be es- . ) . ) .
Series analysis, function approximation. Most of the re-

timated by classical techniques such as subspace ide L
) . . ated approaches assume that the system dynamics is con-
cation methods. However, as pointed out in [71], the me. : C : .
. , ; inuous. Indeed, enabling the estimation of discontin-
trices of the submodels are obtained up to a linear state : . e
. . T uous models is a key feature of algorithms specifically
transformation. This state transformation is different, in

general, for each of the submodels. To combine the Scit)a_agned for hybrid system_ |dent|f|_c_at|on. This is mo-
ated by the fact that logic conditions can be repre-

) |
models they need to be transformed into the same state

Ezmphasis on the identification of SARX models is put in



sented through discontinuities in the state-update and out-
put maps of the identified PWA model.

Remark 3.1 If the PWA map is assumed to be contin-
uous, the model parameters and the partition of the do-
main are not independent. For instance, consider the
PWA map (9) withs = 2. If (9) is continuous, at the
switching surface between the two modes it must hold
thatd, [7] = 6, [7], and hence must satisfy 2

(61— 62)" [T]=0. (21)
Equation (21) defines a hyperplane which divides the do-
main into two regions. Each mode of the PWA map is
valid on one side of the hyperplane. Exploiting con-
straints of the type of (21) can be helpful to the identi-
fication process.

Different categories of approaches to PWA system
identification can be distinguished depending on how the
partitioning into regions is done. It follows from the dis-
cussion in Section 3.2 that there are mainly two alterna-
tive approaches: either the partition is defined a priori, or
it is estimated along with the different submodels.

The first approach requires to define a priori the grid-
ding of the domain. For instance, rectangular regions with
sides parallel to the coordinate axes are used in [9], while
simplices (i.e. polytopes witld + 1 corners, wherel
is the dimension of the domain) are considered in [23]

and [40]. This approach drastically simplifies the estima-3

tion of the linear/affine submodels, since standard linear
identification techniques can be used to estimate the sub-
models, given enough data points in each region. On the
other hand, it has the drawback that the number of regions
and the need for experimental data, grow exponentially
with d. This approach is therefore impracticable for high-
dimensional systems.

The second approach consists in estimating the sub-
models and the partition of the domain either simulta-
neously or iteratively. This should allow for the use of
fewer regions, since the regions are shaped according to
the available data. Depending on how the partition is de-
termined, Roll [61] further distinguishes among four dif-
ferent categories of approaches.

1. The first category relies on the direct formulation of
a suitable criterion function to be minimized, such

as (19). The parameters of the affine submodels and.

the coefficients of the hyperplanes defining the parti-
tion of the domain are therefore estimated simultane-
ously by minimizing the criterion function through

numerical methods (e.g., Gauss-Newton search).

The algorithms proposed in [3, 15, 29, 41, 59] fall
into this category. This way of tackling the identifi-
cation problem is straightforward, but has the draw-
back that the optimization algorithm may get trapped
in a local minimum. Techniques for reducing the risk
of getting stuck in a local minimum can be used, at
the cost of increased computational complexity.

. The second category of approaches is an extension

of the first one, and gives more flexibility with re-
spect to the number of submodels. All parameters
are identified simultaneously for a model with a very
simple partition. If the resulting model is not sat-
isfactory, new submodels/regions are added, in or-
der to improve the value of a criterion function. In
other words, instead to be solved at once, the overall
identification problem is divided into several steps,
each consisting in an easier problem to solve. The
algorithms proposed in [14, 22, 35, 37, 39] fall into
this category. The algorithm [14] has been analyzed
in [59]. The paper [41] also describes an iterative
method for introducing new partitions on the do-
main, when the error obtained is not satisfactory. As
for the first category of approaches, there is still a
risk to get stuck in a local minimum. When adding
new submodels, one should also take into consider-
ation the risk of overfit.

The third category contains a variety of approaches,
sharing the characteristic that the parameters of the
submodels and the partition of the domain are identi-
fied iteratively or in different steps, each step consid-
ering either the submodels or the regions. The algo-
rithms proposed in [5, 27, 47, 56, 60] start by classi-
fying the data points and estimating the linear/affine
submodels simultaneously. Then, region estimation
is carried out by resorting to standard linear sepa-
ration techniques. In [54], the position of rectan-
gular regions is optimized one by one iteratively.
Then, each rectangular region is divided into sim-
plices, in which affine submodels are finally identi-
fied. In [52], a greedy randomized adaptive search
procedure is used to iteratively and heuristically find
good partitions of the domain. Other approaches can
be found in [30] and [31].

The last category of approaches estimates the par-
tition using only information concerning the distri-
bution of the regression vectors, and not the corre-
sponding output values. This means that the domain
is partitioned in such a way that each region con-



tains a suitable number of experimental data to estind is built by applying a polynomial embedding to the
mate an affine submodel. The algorithms proposétput-output data. Then, estimates of the ARX submodel
in [16, 68] fall into this category. The major draw-parameters are obtained by differentiation. This approach
back of this category of approaches is that, withoatso enables for the estimation of the model orders and
considering the output values, a set of data whithe number of submodels.

really should be associated to the same submodel o ) o
might be split arbitrarily. 4 Data classification and region estimation

It is stressed that most of the aforementioned aps pointed out in Section 3.4, identification methods al-
proaches (e.g, [3, 14, 16, 22, 29, 35, 37, 41, 59]) dswing for discontinuities in the PWA map (9) are best
sume that the system dynamics is continuous, while, e gujted in the context of hybrid systems, since they allow
[5, 27, 47, 56, 60] allow for discontinuities. Moreoverogic conditions to be represented by abrupt changes in
only few approaches (e.g., those in the second categdng system dynamics. Most recent contributions, such
[5, 56], and [26], which is an extension of [27]) estimatas [5, 27, 47, 56, 60], have thus focused on regression

also the number of submodels from data. with discontinuous PWA maps. It is interesting to note
_ that all the above mentioned approaches share the idea
3.4.3  Other hybrid model classes to tackle the identification problem by firstly classifying

the data and estimating the affine submodels, and then es-

Recently, some contributions have focused on the clagfating the partition of the regressors domain. In this
of PieceWise Output Erro(PWOE) models, which areé ggtion the data classification step is discussed in view

defined by the equations of the subsequent step of region estimation. Moreover,

a brief overview of linear separation techniques is given,
(22) and issues related to the estimation of the partition from a
w = (7)), finite number of points are highlighted.

Yr = Wk + €

wheref(-) is the PWA map (9), and the regression vector 1 Data classification
71 is built as

T Methods for the identification of PWARX models that
i = [Who1 + s Whon, U Up—1 - Up—p, ] (23) firstly classify the data points and estimate the affine sub-
- L . __models, and then estimate the partition of the regressors
In [63] a prediction-error minimization method for piece- . L . . e .
S . . . domain, split in practice the identification problem into
wise linear output-error predictors is derived under ﬂ{ﬁ . o
: ) . .the identification of a SARX model, followed by the shap-
assumption that the discrete state is known at each time . )
L . . ing of the regions to the clusters of data. In this respect,
step. Estimation of the discrete state is made possi i
) . : . uch methods can be also considered as methods for the
in [46], where a Bayesian method for identification a e : , . .
PWOE models is proposed Identification of SARX models, if the final region esti-
) mation step is not addressed. Vice versa, methods de-
3.4.4 Recursive identification approaches veloped for the identification of SARX models, such as
[51, 74, 78], can be used to initialize the procedures for
All the aforementioned algorithms operate in a batdhe identification of PWARX models.
mode, i.e. the model is identified after all the input-output However, in view of the subsequent step of region
data have been collected. Since the computational cogtimation, data classification for the identification of
plexity of batch algorithms depends on the number of ddtdVARX models needs to be carefully addressed. The
points, such algorithms may not be suitable for real tinfgain problem to deal with is represented by data points
applications. An online algorithm for the identification ofhat are consistent with more than one submodel, namely
SARX/PWARX models is proposed in [65]. It exploits &lata points lying in the proximity of the intersection of
mixture of recursive identification and pattern recognitidiwo or more submodels. Wrong attribution of these data
techniques in order to identify the current parameter v4loints may lead to misclassifications when estimating the
ues. A different approach is pursued in the recent contpielyhedral regions.
butions [32, 75]. A standard recursive identification algo- In order to clarify this point, Fig. 4 shows a data set ob-
rithm is used to estimate the parameters of a “lifted” AR}ined from a one-dimensional PWA model with= 2

model which is independent of the switching sequendéiscrete modes. It is assumed that the parameter vec-



form s clusters of regression vectors as
Ai:{rkzo(k:):i}, i=1,...,s. (26)

The problem of region estimation consists in finding a
complete polyhedral partitior{ﬂzi};”:1 of the regressors
domainR such that4; C R; foralli = 1,...,s. The
polyhedral regions (8) are defined by hyperplanes. Hence,
the considered problem is equivalent to that of separat-

y = b ing s sets of points by means of linear classifiers (hy-
perplanes). This problem can be tackled in two different
r ways:

Figure 4. Example showing the problem of intersecting sub-) Construct a linear classifier for each péi;, A,
models. The data point denoted by the black circle could be  \yith 4 £ j.

in principle attributed to both submodels. Wrong attribatio

yields two non-linearly separable clusters of points. b) Construct a piecewise linear classifier which is able

to discriminate among classes.
tors6; andéd, have been previously estimated, no matter

which method has been used. If each data pajptry) In the first approach, a separating hyperplane is con-
is associated to the submodeélsuch that the predictionstructed for each paitA;, A;), i # j. This amounts to
error is minimized, i.e. according to the rule solve s(s — 1)/2 two-classlinear separation problems.
Given two setsA4; and 4;, i # j, the linear separation

v arg, problem is to findw € R? and~ € R such that

in |yx — o 6il, (24)

the point denoted by the black circle is attributed to the
first submodel. This yields two non-linearly separable
clusters of points. It is stressed that the issue addressed wirp+v<0 Vo, €A
in this example does not depend on the particular choice

of (24) for associating each data point to one submod&his problem can be easily rewritten as a feasibility prob-
If data classification and parameter estimation are ptm with linear inequality constraints by introducing the
formed by solving Problem 3.2 for a giveh > 0, the quantities

point denoted by the black circle is still attributed to the B 1 ifryeA;
first submodel in this case. The gray area in Fig. 4 repre- = { -1 ifrp e A;.
sents the region of all data points satisfying

-
w'r,+v>0 Vr,e A
kT k 27)

(28)

If a hyperplane separating without errors the points in
|y — o4 0s <6 (25) A; from those inA; does not exist (this may happen be-
for bothi — 1 andi — 2. These data points are terme§aUse the setd; and.4; have intersecting convex hulls),

undecidablebecause they could be in principle attribute@ firgt rgasonable approach is to look for a hyperplane_that
to both submodels. maximizes the number of well-separated points (equiva-
The identification procedures [5, 27, 47, 56, 60] Ole(ljﬂntly, that minimizes the number of misclassified points).
with the problem of intersecting submodels in differeri S problem _am_mu_nts to f|_n_d a pa“”’@ SUCh_ that the
ways. Forinstance, an ad-hoc refinement procedure baQ8f1P€r Of satisfied inequalities in (27) is maximized, and
on the certainly attributed closest neighbors is proposed?A‘nown in the literature as MAXimum Feasible Subsys-
[5], weights for misclassification are introduced in [471tem (MAXES) problem. Although the MAXFS problem

and clustering in a feature space is pursued in [27]. Thég&nown to be NP-hard, several heuristics have been de-
three approaches will be described in Section 5. veloped which work well in practice (see [1]). One draw-
back of the MAX FS approach is that it may not have a

4.2 Region estimation unique solution, as shown in Fig. 5.

An alternative approach for linear separation in the in-
After the data classification step, providing the estimatesparable case is the minimization of a suitable cost func-
of the discrete state(k) € {1,...,s}, it is possible to tion associated with errors. In the simplest case, this idea
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uous line and the dashed line represent two different solsti
to the problem of minimizing the number of misclassification
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leads to the following linear program: “ L B8 © ° o
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A A ©
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w,7,Vk Z - o o
st. zglw ry4+4] > 11—y (29) o B0 0
a
v >0 Vry e AU A;, o,
a
wherec;, > 0 are misclassification weights. If the data .

setis linearly separable, and therefore there exiahd~y

) Figure 7. Multi-class linear separation of the same data set as
such that the constraints g P

in Fig. 6. The partition is complete.

zplw rp+9] > 1 (30)

isfied for alk Il th i . form a complete partition of the regressors domain when
are satisfied for alr;, € A; U A;, all the auxiliary vari d > 1, as shown in Fig. 6. This drawback is quite im-

able‘?‘”’“ can be taken equal to zero. If_the data set portant, since it causes the model to be not completely
not Ilnearly_separable, the gumhary va_lrlable§ allow defined over the whole regressors domain. If the pres-
the cor]:stzrglnts (E’O) to be I"Olated'T Since, a:c the”opg-nce of “holes” in the partition is not acceptable, one
mum of (29),v; = Elax {Ofal B Zk[wb Tk F 71} o;a can resort to approady. Multi-classlinear separation
rr € A; U.A;, each variabley, can be interpreted as dechniques construet classification functions such that,

misclassification errar The originalRobust Linear Pro- at each data point, the corresponding class function is

gramming(RLP) _method proposed in [7] is_a paLrticmafnaximal. Classical two-class separation methods such
case of (29), while th&upport Vector Machine$SVM) as SVM and RLP have been extended to this multi-class

method_ [19] solves a quadratic program under the same. [8, 13]. The resulting methods are calédlticat-
constraints as (29). egory SVM (M-SVM) or MulticategoryRLP (M-RLP),

Remark 4.1 When the se#d; has been linearly separated® Stress their ability of dealing with problems involving
from all the other setst;, j # 4, redundant hyperplanesMore than two clqsses (see Fig. 7). Multi-class prqblems
(i.e. not contributing to the boundaries of the regidp involve all the available data, and therefore apprdadh

can be eliminated through standard linear programmifgMmputationally more demanding than approagh

techniques, so that the number of linear inequalities defin- ) i
ing thedth region isy; < s — 1. Remark 4.2 Even if all the data points are correctly clas-

sified, it is not possible in general to reconstruct exactly

Approacha) is computationally appealing, since it doethe regions from a finite data set. If the true system is
not involve all the data simultaneously. A major draweharacterized by continuous dynamics, small differences
back is that the estimated regions are not guaranteedntbyperplane orientations are not expected to alter signif-



steps that each method performs are the estimation of the
discrete stater(k), and the estimation of the parameter
vectors{#;}7_,. Estimation of the polyhedral partition
{Ri};_, of the regressors domain, if needed, can be car-
ried out in the same way for all methods by resorting to
the techniques described in Section 4.2.

5.1 Algebraic procedure

€, (prediction error)

The method proposed in [51, 74, 78] approaches the

identification of SARX models as an algebraic geometric

A ‘ 20 0 50 20 problem. It provides a closed-form solution to the identi-
k (time) fication problem that is provably correct in the absence of

Figure 8. Distinct spikes show up in the plot of the predictiod'0!S€-

errors due to discontinuity of the PWA map, and wrong assign- 1 e key idea behind the algebraic approach is to view

ment of the regression vectors because of errors in estigyatihe identification of multiple ARX models as the identi-

the switching surfaces. fication of a single, “lifted” ARX model that simultane-
ously encodes all the ARX submodels and does not de-

icantly the quality of the model. On the other hand, evé?r?nd :)n the switching sequence. The parameters of the
small errors in shaping the surfaces along which the trdgted _ARX_ _mOP'e' can b,e identified throu_gh standard
system is discontinuous, may determine large predictiB'ﬂ_ear |dent|f|gat|on technlques_after applying a polyno-
errors, if a regression vector falling close to a discontri'-“"‘II embedding to the regression vectors. The parame-

nuity, is associated to the wrong submodel. Such errdfss of the original ARX submodels are then given by the

can be typically detected and corrected a posteriori duriHS”Vat'Ve_s of th'S_ polyqomlal.

the validation or the operation of the model, as shown in/ASsuming for simplicity that the number of submodels
Fig. 8. If distinct spikes show up in the prediction errof and the model orders, andn; are known (these as-
plot, the corresponding data points can be re-attributé&,mpt'ons will be subsequently removed), the algebraic

and the augmented data set used to re-estimate theptrg_cedure works as follows. If the data are generated by
model (5) withe, = 0 (noiseless case), each data pair

gions. .
(yx, r)) Satisfies
5 Four procedures for the identification of vk — 0] 1. =0 (31)
SARX/PWARX models . , .
for somed;, i = 1,...,s. Hence, the following equality
In this section, four procedures for the identification dtelds for allk: s
SARX/PWARX models are briefly discussed, namely the H (b z1) (32)
algebraic procedure [51, 74, 78], the clustering-based i=1

procedure [27], the Bayesian procedure [47], and tWﬁerebi =167 andzy, = [y gOII]T_ Equation (32)
bounded-error procedure [5]. Itis stressed that other gf-.4eq thehybrid decoupling constraipsince it is in-

fective techniques are available (see Section 3.4). Th&,andent of the switching sequence and the mechanism

ones considered here are closely related to the reseqfCherating the transitions. In view of (32), thgbrid de-
activities of the authors of this paper, and have been SEBupling polynomials defined as '

cessfully exploited in several real applications, such as
the identification of the electronic component placement - T
process in pick-and-place machines [5, 43, 47], the mod- ps(2) = H (bi ) = vs(2), (33)
elling of a current transformer [27], traction control [11], =1
and motion segmentation in computer vision [76, 77]. which is a homogeneous polynomial of degeei@ z =
While the algebraic procedure focuses on the identifiz; ... zx |7, K = n, + ny + 3. Note that (33) can
cation of SARX models, the other three procedures dve written as a linear combination of all the,(K) =
designed for the identification of PWARX models, an@s+%-1) monomials of degree in K variables. Such
are able to deal with discontinuous dynamics. The basimnomials are stacked in the vectarz) according to

s



the degree-lexicographic order. The vedioe RM=(K) o Local regression.For k = 7,..., N, a local data

contains the so-callelybrid model parameterand en- setCy, is built by collecting (yx, 7x) and the data
codes the parameter vectors of theubmodels. Since points(y;, ;) corresponding to the— 1 regression
(32) holds for allk, the vector can be estimated by solv- vectorsr; that are closebtto ;. Local parameter
ing the linear systefn vectors@,fs are then computed for each local data

setC, by least squares. For analysis purposes, local
Ls(K)h =0, (34) data sets containing only data points generated by

whereLy(K) = [vs(zn) vs(2n41) ... vs(zx)]T. Once the same submodel are referred tpass, otherwise

h has been computed, the vectérsan be reconstructed ~ they are calleanixed

aS . .
nstruction of f re v rsEach in
Dps(z1,) e Construction of feature vectorsEach data point

b, = 10 .. 01Dps(en)’ (35) (yx, Tk) is mapped onto the feature vector

whereDp;(z) = %, andz, is a data point generated & =102%) my 1, (37)

by theith ARX submodel, which can be chosen automati-  \yherem,, = 1 Y (yrec, T i the center of.

cally oncep,(-) is known [78]. Given the;’s (and conse- ¢ sk

quently thed;'s), the discrete state is estimated according ® Clustering. Feature vectors are partitioned into

to the rules (k) = i*, with i* given by (24). As discussed ~ groups{F;};_; by applying a “K-means™like al-

in Section 4.1, enhanced classification rules can be used gorithm exploiting suitably defined confidence mea-

by incorporating additional knowledge about the switch- ~ sures on the feature vectors. The confidence mea-

ing mechanism (e.g., PWARX models), when available. ~ sures make it possible to reduce the influence of out-
The linear system (34) has a unique solution (requiring liers and poor initializations.

that the first component df is equal to 1) when the data

are sufficiently exciting, and, n, andn; are known ex-

actly. If s is not known, it is shown in [78] that it can be

estimated as

e Parameter estimatiorSince the mapping of the data
points onto the feature space is bijective, data points
are classified into clustefsD; }?_, according to the
rule

s =argmin{i : rank(L;(K)) = M;(K)—1}. (36) (Ye, k) €Dy iff & € F. (38)
A parameter vectdt; is estimated for each data clus-

The algebraic procedure described above can be .
ter D; by weighted least squares.

amended when only upper boungs:, andn,, for s, n,
and ny, respectively, are available. In those cases, theThe clustering-based procedure requires that the model
procedure allows for the estimation of all the unknowerdersn, andn;, and the number of submodeisare
guantities. More details can be found in [51, 74]. fixed. The parameter, defining the cardinality of the lo-

cal data sets, is the main tuning knob. In practical use, the
method is expected to perform poorly if the ratio between

h f mi local is high. Th
The clustering-based procedure [27] exploits the fact tr}a{a number of mixed and pure local data sets is hig ©

i . number of mixed local data sets increases withlence,
the PWA map (9) is locally linear. If the data are gener:-. . .
. . . it is desirable to keep as small as possible. On the other
ated by (10), there likely exist groups of neighbor regre

. . . ﬁ'and, when the noise level is high, large values ofay
sion vectors belonging to the same region (and the Saflheeded in order to filter out the effects of noise.

Isubrlngd:al). Izararr]n etlzr vectorts)l C?[rr:] puted fortthese tsmaAn important feature of the clustering-based procedure
ocal data sets should resemble the parameter vectog OIs ability to distinguish submodels characterized by the

iS]
same parameter vector, but defined in different regions.

the corresponding submodel. Hence, information about
the submodels can be obtained by clustering the local Ris is possible because the feature vectors contain also
information on the location of the local data sets. A mod-

rameter vectors.
Th? cl_usterlng_—basf_ed procedure works as follows. TI feation to the clustering-based procedure is proposed in
positive integer is a fixed parameter. [26] to allow for the simultaneous estimation of the num-
“The solution must be intended in a least-squares sense in the ndigy of submodels. The clustering-based procedure is ana-
case. . . . . . I%/zed in [28], where it is shown that optimal classification
SEvaluation of (36) in the noisy case requires to introduce a thresh-

old for estimating the rank aof; (K). S5According to the Euclidean norm.

5.2 Clustering-based procedure




can be guaranteed under suitable assumptions in the pfitering algorithms are used [2]. After the parameter es-
ence of bounded noise. A software implementation of thienation phase, each data point is finally attributed to the

clustering-based procedure is also available [24]. mode that most likely generated it.
. To estimate the regions, a modification of the standard
5.3 Bayesian procedure Multicategory RLP (MRLP) method [8] is proposed in

[47]. If a regression vector attributed to modlends up

The Bayesian procedure [42, 47] is based on the ideair?fthe regiorR, (this may happen, e.g., in the case of in-

exploiting the available prior knowledge about the mOd?érsecting submodels, see Section 4.1 and Fig. 4), and the

and the parameters of the hybrid system. The param%ﬁfbabilities that the corresponding data point is gener-
vectorsd; are treated as random variables, and descrlbﬁgd by mode and modej are similar, misclassification

through their probability density functionpdfs) ps,(-)-  shouid not be penalized highly. To this aim, for each data

A priori knowledge on the parameters can be supplieine .. 1., attributed to mode, the price for misclas-
to the procedure by choosing appropriate prior parames .-+ion into modej is defined as
ter pdfs. Various parameter estimates, such as expecta-

tion or maximum a posteriori probability estimate, can be | p((yr, ) | o(k) = 1)

easily obtained from the paramefedfs. The data clas- vij(ri) = log (g r2) | o (k) = 5)°

sification problem is posed as the problem of finding the

data classification with the highest probability. Since thighere p((yx,rx) | o(k) = ¢) is the likelihood that

problem is combinatorial, an iterative suboptimal algdyx, i) was generated by mode Note that the price

rithm is derived. It is assumed that the probability densifgr misclassification is zero if the probabilities are exactly

functionp,(-) of the additive noise terry is given. equal. Prices for misclassification are plugged into the
Data classification and parameter estimation are carr/d&LP method.

out by sequential processing of the collected data pointsThe Bayesian procedure requires that the model orders

In each iteration, thedf of one of the parameter vectors:, andn;, and the number of submodelsre fixed. The

is updated. Leby,(-; k) denote thepdf of §; at iteration most important tuning parameters are the prior parameter

k, when the data poirttyx, r1) is considered. The condi-pdfs py, (-; 0), and thepdf p.(-) of the error term. In [46]

tional pdf p((yx, 7x) | o(k) = i) is given by the Bayesian approach has been extended to the identifi-

cation of piecewise output error models.

(43)

p((yrk,ri) | o(k) = i) =

— [ plwr) | O pa Gt~ vyag, Y
©; Inspired by ideas from set-membership identification
(see, e.g., [53] and references therein), the main feature
of the bounded-error procedure [5, 57] is to impose that

(Y, ) | 0) = pe(yr — 0 o). (40) the errore; in (10) is bounded by a given quantidy> 0
for all the samplesgyy, ) in the estimation data set, i.e.
The discrete state corresponding(ig, r) is estimated
aso(k) = i*, where lyw — f(re)] <6, Vk=mn,...,N. (44)

5.4 Bounded-error procedure

where®; is the set of possible values féy, and

i* = arg Z,gf{auxsjv((yk, ry) | o(k) =1i).  (41) Hence, the bounded-error procedure fits a PWARX model
satisfying (44) to the data, without any assumption on the
Then, the assignment @f;, %) to mode:* is used to system generating the data.

update thepdf of 0~ by the Bayes rule, i.e. Since any PWARX model satisfying the bounded-error
condition (44) is feasible, an initial guess of the number of

Po,. (0; k) = submodelss is obtained by addressing Problem 3.2. The
(e, 7k) | ) Py, (6;k = 1) (42) solutiorf of Problem 3.2 provides also a raw data classifi-

[ (s rr) | 0) pe,. Bk —1)dd cation that suffers two drawbacks. The first one is related

O to the suboptimality of the method used to tackle Prob-

Pdfs of the other parameter vectors remain unchang&{n 3.2, implying that it is not guaranteed to yield the

?-e- Z_?ei(ﬁ k) = PG}-(‘; k—1)fori 7’é i*. For t_he NUMET-  7in [5] a method for the solution of Problem 3.2 is proposed to
ical implementation of the described algorithm, particknhance the performance of the greedy randomized algorithm [1].




minimum number of submodels. The second one is f@&5 Discussion

lated to the problem afindecidabledata points (see Sec-

tion 4.1), implying that the cardinality and the composiFhe four identification procedures described in this sec-

tion of the feasible subsystems may depend on the ordien are compared and discussed in [44] (see also [45]).

in which they are extracted from (12). There, specific behaviors of the procedures with respect
To deal with the aforementioned drawbacks, an itert® classification accuracy, noise level, and tuning parame-

tive refinemenprocedure is applied. The refinement prders are pointed out using simple one-dimensional exam-

cedure alternates between data reassignment and pargi@s- The procedures are also tested on the experimental

ter update. If needed, it enables the reduction of the nuigientification of the electronic component placement pro-

ber of submodels. For given positive threshaidand 3, cess in pick-and-place machines.

submodels and; are merged ify; ; < «, where From the comparison, it comes out that the algebraic
procedure is well suited when the system generating the

16; — 05| data can be accurately described as a switched affine

Yij = (45) model, and moderate noise is present. The main fea-

min{||6;]], 165} : _
tures of the algebraic procedure are that it can handle the
and|| - || is the Euclidean norm. Submodek discarded cases with unknown model orders and unknown number
if the cardinality of the seD; of data points classified toof submodels, and it does not require any form of ini-
mode: is less than3N. Data points that do not satisfytialization. However, noise and/or nonlinear disturbances
(44) are discarded asfeasibleduring the classification affecting the data may cause poor identification results.
process, making it possible to detect outliers. In [5] p&lVhen trying to identify a PWARX model using the data
rameter estimates are computed by theprojection es- classification obtained from the algebraic procedure, one

timator, i.e. must be aware that the minimum prediction error classi-
fication rule (24) may lead to wrong data association. In
f; = argmin  max |y — ¢} 0], (46) such cases, it is advisable to use one of the classification
(yk,rk)E€Ds methods employed by other procedures.

o : The clustering-based procedure is well suited when
but any other projection estimate, such as least squargs, . . .

thete is no prior knowledge on the physical system, and
can be used [53].

. ne needs to identify a model with a prescribed structure
The bounded-error procedure requires that the mode
: . ) (1.e. the number of submodels and the model orders are
ordersn, andn;, are fixed. The main tuning parameter is
the bound. As discussed in Section 3.1, the largethe

given). ldentification using the clustering-based proce-
smaller the required number of submodels at the pricedolfre is straightforward, as only one parameter has to be
a worse fit of the data. The optional parametend 3,

tuned. However, poor results can be obtained when the
) L . . model orders are overestimated, since distances in the fea-
if used, also implicitly determine the final number of suq- . ) ,
. ure space become corrupted by irrelevant information.
models returned by the procedure. Another tuning param:l_he Bavesian procedure is desianed to take advantage
eter is the number of closest neighbors used to attribute y P 9 9

undecidable data points to submodels in the refinem%:)r];tprlor knowledge and ph)_/3|c_al |nS|ght into the opera-
step ion modes of the system (like in the pick-and-place ma-

chine identification [47]). Another interesting feature is

Remark 5.1 The bounded-error formulation (44) can pihe automatic computation of misclassification weights to

easily extended to multi-output models. In this case, tRE PIUgged into the linear separation techniques used for
output of the system ig, € RY, the PWA map (9) is a region estimation. As a major drawback, poor initializa-

g-valued function, and (44) is replaced by tion may lead to poor |dent|f|cat|0r_1 results. _
The bounded error procedure is well suited when no

lye = F(ri)lw <6, Vk=n,...,N,  (47) Priorknowledge on the physical system is available, and
k o0 ’ Y one needs to identify a model with a prescribed accuracy

where|- || is the infinity norm of a vector. The bounded(€-9-» 10 @pproximate nonlinear dynamics in each oper-

error procedure [5, 57] is then applicable also to the ca%téon mode). Tuning parameters allow to trade-off the

g > 1, provided that Problem 3.2 is reformulated angpodel accuracy with the model complexity, expressed in
terms of the mean squared error and the number of sub-

solved accordingly. The interested reader is referred X R : X
models, respectively. However, finding the right combi-

[57].



nation of the tuning parameters is seldom straightforwamtocess at hand is needed. Hence, techniques for obtain-
and several attempts are often needed to get a satisfactogyaccurate models are of paramount importance. Most
model. effort in the area of hybrid system identification has re-
It is stressed that mixing the features of the four proceently focused on identifying switched affine and piece-
dures could still enhance their effectiveness. In particulavise affine models. In the first part of the paper, differ-
_ _ .. . ent formulations of the identification problem for these

e The algebraic procedure can be used to initialize the, o ¢jasses have been reported, and an overview of the
other three procedures by providing estimates of tl?glated literature has been presented. Although work on
model orders and the number of submodels. regression with continuous PWA maps can be found in

e By exploiting the idea of clustering the feature vedhe extensive literature on nonlinear black-box identifi-
tors, the clustering-based procedure is able to distfftion, most recent contributions aimed at the identifica-
guish submodels characterized by the same paraﬁﬁn of models with a hybrid and discontinuous structure.
eter vector, but defined in different regions. This @MONg these, an algebraic procedure, a Bayesian proce-
pitfall of both the Bayesian and the bounded-err&fure, a clustering-based procedure, anpl a.bounded-error
classification procedures. Since these proceduresiigcedure have been successfully applied in several real
not exploit the spatial location of the submodel@,mb'ems- The four procedures have been the topic of the

data points generated by the same parameter ved®Fond part of the paper. ' .
in different regions are classified as a whole. This It has emerged that a fundamental issue in PWA system

may lead to non-linearly separable clusters. Cm:@_entification is how to keep the computational complex-
tering ideas contained in the clustering-based prod®.and the model complexity (number of model parame-
dure can be extended to the other two proceduredS) 1ow. The computational complexity for a given algo-

order to detect and split the clusters correspondifif!™ IS a function of the number of regions/submodels,
to such situations. the number of experimental data, and the model orders.

Hence, there are many trade-off situations when compar-
e The Bayesian procedure includes the computationiagy different methods and tuning parameters for given al-

misclassification weights to be plugged into the lirgorithms. For instance, it has been pointed out that prior
ear separation techniques used for region estimatigridding of the domain drastically simplifies the identi-
This feature can be extended to the clustering-badgshtion problem, but the numbers of regions and data
and the bounded-error procedures. In the latter caseeded to get good results increase exponentially with the
for each data pointyy, 1) attributed to mode, the model orders. Hence, this approach may be good for low-
price for misclassification into modecould be de- dimensional systems.

fined as Another trade-off issue concerns model complexity and
lyr — 0] 74| quality. The more degrees of freedom are allowed in the
vij(re) = Alog max{1, +}’ (48) model structure, the closer the model can approximate
the experimental data. However, since data are typically

where) > 0 is a scale factor. corrupted by noise, too much flexibility might cause the

model to adjust to the noise realization, thereby causing
e The bounded-error procedure can be used to gugggrfit. This is indeed a general problem of system identi-
the number of submodels, especially when the dyzation, occurring not only for piecewise affine systems.
namics in each operation mode of the true system isseyeral issues still remain open. Though, given the
nonlinear, and more modes than the true system @& ivalence between PWA models and other classes of
thus required to accurately approximate all the NoRyhrid models, PWA system identification techniques can
linear dynamics. be regarded as general hybrid system identification tech-
niques, the development of specific identification tools for
different hybrid model classes would be advisable. In this

Hybrid system identification is an emerging field whos§@Y: the identification process could take advantage of

importance grows with the potential new applications &vallable prior knowledge that cannot be easily expressed

hybrid systems in real life. In order to use the numel? Ithel F;WA for_mall|(sm. led q hvsics in th
ous tools for analysis, verification, computation, stabil- ncluding prior knowledge and system physics in the

ity, and control of hybrid systems, a hybrid model of th@Ientification process leads to the broader perspective

6 Conclusions



of application-based hybrid system identification. New[9] Billings SA, Voon WSF. Piecewise linear identi-
frontiers for hybrid system identification are opening,

e.g., along with the emerging field of systems biology (see
[25] and references therein).

Finally, the choice of persistently exciting input signals
for identification (i.e. allowing for the correct identifica-
tion of all the affine dynamics) is another important topic

to be addressed. Preliminary results have been proposed
in [75], but the derived persistence of excitation condirll]
tions involve both the input and the output data. More-

over,

the choice of the input signal should be such that not only
all the affine dynamics are sufficiently excited, but als?lz
accurate shaping of the boundaries of the regions is pos-

sible.
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